
event.cwi.nl/lsde2015

Large-Scale Data Engineering
Modern SQL-on-Hadoop Systems

event.cwi.nl/lsde2015

Analytical Database Systems

Parallel (MPP):
Teradata Paraccel
Pivotal
Vertica Redshift

Oracle (IMM) Netteza
DB2-BLU InfoBright
SQLserver Vectorwise
(columnstore)

open source:
MySQL LucidDB
MonetDB

?

event.cwi.nl/lsde2015

SQL-on-Hadoop Systems
Open Source:
• Hive (HortonWorks)
• Impala (Cloudera)
• Drill (MapR)
• Presto (Facebook)

Commercial:
• HAWQ (Pivotal)
• Vortex (Actian)
• Vertica Hadoop (HP)
• BigQuery (IBM)
• DataBricks
• Splice Machine
• CitusData
• InfiniDB Hadoop

event.cwi.nl/lsde2015

“wrapped
 legacy”

“from
scratch”

SQL
Maturity

(performance+features)

Hadoop Integration

 “SQL on Hadoop” Systems

Low Native

High

“outside
Hadoop”

event.cwi.nl/lsde2015

Analytical DB engines for Hadoop
 storage

–columnar storage + compression
–table partitioning / distribution
–exploiting correlated data query-processor

 CPU-efficient query engine
 (vectorized or JIT codegen)
 many-core ready
 rich SQL (+authorization+..)

 system
 batch update infrastructure
 scaling with multiple nodes
 MetaStore & file formats
 YARN & elasticity

event.cwi.nl/lsde2015

Columnar Storage
row-store column-store

Date Customer Product Store

+ easy to add/modify a record

- might read in unnecessary data

+ only need to read in relevant data

- tuple writes require multiple accesses

=> suitable for read-mostly, read-intensive, large data repositories

Date Store Product Customer Price Price

Query on data and store

Inserting a new record

event.cwi.nl/lsde2015

Analytical DB engines for Hadoop
 storage

–columnar storage + compression
–table partitioning / distribution
–exploiting correlated data query-processor

 CPU-efficient query engine
 (vectorized or JIT codegen)
 many-core ready
 rich SQL (+authorization+..)

 system
 batch update infrastructure
 scaling with multiple nodes
 MetaStore & file formats
 YARN & elasticity

event.cwi.nl/lsde2015

Columnar Compression
• Trades I/O for CPU

– A winning proposition currently
– Even trading RAM bandwidth for CPU wins

• 64 core machines starved for RAM bandwidth
• Additional column-store synergy:

– Column store: data of the same distribution close together
• Better compression rates
• Generic compression (gzip) vs Domain-aware compression

– Synergy with vectorized processing (see later)
compress/decompress/execution, SIMD

– Can use extra space to store multiple copies of data in different
sort orders (see later)

event.cwi.nl/lsde2015

Run-length Encoding

Q1
Q1
Q1
Q1
Q1
Q1
Q1

Q2
Q2
Q2
Q2

…

…

1
1
1
1
1
2
2

1
1
1
2

…

…

Product ID Quarter
(value, start_pos, run_length)

(1, 1, 5)

…

…

Product ID Quarter

(Q2, 301, 350)
(Q3, 651, 500)
(Q4, 1151, 600)

(2, 6, 2)

(1, 301, 3)
(2, 304, 1)

5
7
2
9
6
8
5

3
8
1
4

…

…

Price

5
7
2
9
6
8
5

3
8
1
4

…

…

Price

(Q1, 1, 300)
(value, start_pos, run_length)

event.cwi.nl/lsde2015

Bitmap Encoding

1
1
1
1
1
2
2

1
1
2
3

…

…

Product ID

1
1
1
1
1
0
0

1
1
0
0

…

…

ID: 1 ID: 2 ID: 3

0
0
0
0
0
0
0

0
0
0
0

…

…

…

0
0
0
0
0
0
0

0
0
0
1

…

…

0
0
0
0
0
1
1

0
0
1
0

…

…

“Integrating Compression and Execution in Column-Oriented
Database Systems” Abadi et. al, SIGMOD ’06

• For each unique
value, v, in column c,
create bit-vector b

– b[i] = 1 if c[i] = v
• Good for columns

with few unique
values

• Each bit-vector can
be further
compressed if sparse

event.cwi.nl/lsde2015

Q1
Q2
Q4
Q1
Q3
Q1
Q1

Q2
Q4
Q3
Q3
…

Quarter

Q1

0
1
3
0
2
0
0

1
3
2
2

…

Quarter

0

0: Q1
1: Q2
2: Q3
3: Q4

Dictionary Encoding

Dictionary
+

OR

24
128
122

Quarter

24: Q1, Q2, Q4, Q1

128: Q3, Q1, Q1, Q1

122: Q2, Q4, Q3, Q3

Dictionary

+

“Integrating Compression and Execution in Column-Oriented
Database Systems” Abadi et. al, SIGMOD ’06

…

• For each unique
value create
dictionary entry

• Dictionary can
be per-block or
per-column

• Column-stores
have the
advantage that
dictionary
entries may
encode multiple
values at once

event.cwi.nl/lsde2015

45
54
48
55
51
53
40

49
62
52
50
…

Price

50

Frame: 50

4
-2
5
1
3

2

0

0
…

Price

-1

Frame Of Reference Encoding

-5

∞
40

∞
62

4 bits per
value

Exceptions (there
are better ways to
deal with
exceptions)

• Encodes values as b bit
offset from chosen frame
of reference

• Special escape code (e.g.
all bits set to 1) indicates a
difference larger than can
be stored in b bits

– After escape code,
original (uncompressed)
value is written

 “Compressing Relations and Indexes ”
Goldstein, Ramakrishnan, Shaft, ICDE’98

event.cwi.nl/lsde2015

Differential Encoding

5:00
5:02
5:03
5:03
5:04
5:06
5:07

5:10
5:15
5:16
5:16

…

Time

5:08

2
1
0
1
2

1

1

0

Time

2

5:00

1

∞
5:15

2 bits per
value

Exceptions (there
are better ways to
deal with
exceptions)

• Encodes values as b bit offset from
previous value

• Special escape code (just like
frame of reference encoding)
indicates a difference larger than
can be stored in b bits

– After escape code, original
(uncompressed) value is written

• Performs well on columns
containing increasing/decreasing
sequences

– inverted lists
– timestamps
– object IDs
– sorted / clustered columns

“Improved Word-Aligned Binary
Compression for Text Indexing” Ahn,
Moffat, TKDE’06

event.cwi.nl/lsde2015

Heavy-Weight Compression Schemes

• Modern disks (SSDs) can achieve > 1GB/s
• 1/3 CPU for decompression  3GB/s needed

 Lightweight compression schemes are better

 Even better: operate directly on compressed data

“Super-Scalar RAM-CPU Cache Compression”
Zukowski, Heman, Nes, Boncz, ICDE’06

event.cwi.nl/lsde2015

Examples
• SUMi(rle-compressed column[i])  SUMg(count[g] * value[g])
• (country == “Asia”)  countryCode == 6

 strcmp SIMD

Benefits:
• I/O - CPU tradeoff is no longer a tradeoff (CPU also gets improved)
• Reduces memory–CPU bandwidth requirements
• Opens up possibility of operating on multiple records at once

Operating Directly on Compressed Data

“Integrating Compression and Execution in Column-Oriented
Database Systems” Abadi et. al, SIGMOD ’06

event.cwi.nl/lsde2015

Analytical DB engines for Hadoop
 storage

–columnar storage + compression
–table partitioning / distribution
–exploiting correlated data query-processor

 CPU-efficient query engine
 (vectorized or JIT codegen)
 many-core ready
 rich SQL (+authorization+..)

 system
 batch update infrastructure
 scaling with multiple nodes
 MetaStore & file formats
 YARN & elasticity

event.cwi.nl/lsde2015

• data is spread based on a Key
– Functions: Hash, Range, List

• “distribution”
– Goal: parallelism

• give each compute node a piece of the data
• each query has work on every piece (keep everyone busy)

• “partitioning”
– Goal: data lifecycle management

• Data warehouse e.g. keeps last six months
• Every night: load one new day, drop the oldest partition

– Goal: improve access patterm
• when querying for May, drop Q1,Q3,Q4 (“partition pruning”)

Table Partitioning and Distribution

distribute by hash

Q1

Q2

Q3

Q4

partition by range

Which kind of function would you use for which method?

event.cwi.nl/lsde2015

Vertica Multiple Orders (Projections)
• Precomputed Projections

reduce join effort
• Projections are ordered (e.g.

on “date”, or on “cust”)
• Ordered data allows

“selection pushdown”
– Scan less data

• Ordered Data enhances
compression

– Run-length encoding
– Frame of Reference

event.cwi.nl/lsde2015

• Each node writes the partitions it owns
– Where does the data end up, really?

• HDFS default block placement strategy:
– Node that initiates writes gets first copy
– 2nd copy on the same rack
– 3rd copy on a different rack

• Rows from the same record should on the same node
– Not entirely trivial in column stores

• Column partitions should be co-located
– Simple solution:

• Put all columns together in one file (RCFILE, ORCFILE, Parquet)
– Complex solution:

• Replace the default HDFS block placement strategy by a custom one

Data Placement in Hadoop

distribute by hash

Q1

Q2

Q3

Q4

partition by range

event.cwi.nl/lsde2015

Example: Parquet Format

event.cwi.nl/lsde2015

• Good old CSV
– Textual, easy to parse (but slow), better compress it!

• Sequence Files
– Binary data, faster to process

• RCfile
– Hive first attempt at column-store

• ORCfile
– Columnar compression, MinMax

• Parquet
– Proposed by Twitter and Cloudera Impala
– Like ORCfile, no MinMax

Popular File Formats in Hadoop

distribute by hash

Q1

Q2

Q3

Q4

partition by range

event.cwi.nl/lsde2015

Example: Parquet Format

event.cwi.nl/lsde2015

HCatalog (“Hive MetaStore”)
De-facto Metadata Standard on Hadoop
• Where are the tables? Wat do they contain? How are they Partitioned?
• Can I read from them? Can I write to them?

SQL-on-Hadoop challenges:
• Reading-writing many file formats
• Opening up the own datastore to

foreign tools that read from it
HCatalog makes UDFs less

important!

event.cwi.nl/lsde2015

Analytical DB engines for Hadoop
 storage

–columnar storage + compression
–table partitioning / distribution
–exploiting correlated data query-processor

 CPU-efficient query engine
 (vectorized or JIT codegen)
 many-core ready
 rich SQL (+authorization+..)

 system
 batch update infrastructure
 scaling with multiple nodes
 MetaStore & file formats
 YARN & elasticity

event.cwi.nl/lsde2015

• Data is often naturally ordered
– very often, on date

• Data is often correlated
– orderdate/paydate/shipdate
– marketing campaigns/date
– ..correlation is everywhere
 ..hard to predict

Can we exploit correlation?
– Very sparse index
– Keeps MinMax for every column
– Cheap to maintain

• Just widen bounds on
 each modification

MinMax and Zone Maps

Q: key BETWEEN 13 AND 15?

Q: acctno BETWEEN 150 AND 200?

bucket 0
bucket 1

bucket 2
bucket 3

event.cwi.nl/lsde2015

Analytical DB engines for Hadoop
 storage

–columnar storage + compression
–table partitioning / distribution
–exploiting correlated data query-processor

 CPU-efficient query engine
 (vectorized or JIT codegen)
 many-core ready
 rich SQL (+authorization+..)

 system
 batch update infrastructure
 scaling with multiple nodes
 MetaStore & file formats
 YARN & elasticity

event.cwi.nl/lsde2015

DBMS Computational Efficiency?
TPC-H 1GB, query 1
• selects 98% of fact table, computes net prices and aggregates all
• Results:

– C program: ?
– MySQL: 26.2s
– DBMS “X”: 28.1s

“MonetDB/X100: Hyper-Pipelining Query
Execution ” Boncz, Zukowski, Nes, CIDR’05

event.cwi.nl/lsde2015

DBMS Computational Efficiency?
TPC-H 1GB, query 1
• selects 98% of fact table, computes net prices and aggregates all
• Results:

– C program: 0.2s
– MySQL: 26.2s
– DBMS “X”: 28.1s

“MonetDB/X100: Hyper-Pipelining Query
Execution ” Boncz, Zukowski, Nes, CIDR’05

event.cwi.nl/lsde2015

SCAN

SELECT

PROJECT

alice 22 101
next()

next()

next()

ivan 37 102

ivan 37 102

ivan 37 102

ivan 350 102

alice 22 101

SELECT id, name
 (age-30)*50 AS bonus
FROM employee
WHERE age > 30

350

FALSE TRUE

22 > 30 ? 37 > 30 ?

37 – 30 7 * 50

7

How Do Query Engines Work?

event.cwi.nl/lsde2015

SCAN

SELECT

PROJECT

next()

next()

next()

ivan 350 102

Operators

Iterator interface
-open()
-next(): tuple
-close()

How Do Query Engines Work?

event.cwi.nl/lsde2015

SCAN

SELECT

PROJECT

alice 22 101
next()

next()

next()

ivan 37 102

ivan 37 102

ivan 37 102

ivan 350 102

alice 22 101

350

FALSE TRUE

22 > 30 ? 37 > 30 ?

37 – 30 7 * 50

7
Primitives

Provide computational
functionality

All arithmetic allowed in
expressions,
e.g. Multiplication

mult(int,int)  int

7 * 50

How Do Query Engines Work?

event.cwi.nl/lsde2015

SCAN

SELECT

PROJECT

next()

next()

101
102
104
105

alice
ivan
peggy
victor

22
37
45
25

7
15

FALSE
TRUE
TRUE
FALSE

37
45

ivan
peggy

102
104

350
750

ivan
peggy

102
104

350
750

Observations:

next() called much less
often  more time spent
in primitives less in
overhead

primitive calls process an
array of values in a
loop:

> 30 ?

- 30 * 50

22
37
45
25

alice
ivan
peggy
victor

101
102
104
105

“Vectorized In Cache
Processing”

vector = array of
~100

processed in a tight
loop

CPU cache Resident

next()

“MonetDB/X100: Hyper-Pipelining Query Execution
” Boncz, Zukowski, Nes, CIDR’05

event.cwi.nl/lsde2015

SCAN

SELECT

PROJECT

next()

next()

101
102
104
105

alice
ivan
peggy
victor

22
37
45
25

7
15

FALSE
TRUE
TRUE
FALSE

37
45

ivan
peggy

102
104

350
750

ivan
peggy

102
104

350
750

Observations:

next() called much less
often  more time spent
in primitives less in
overhead

primitive calls process an
array of values in a
loop:

> 30 ?

- 30 * 50

CPU Efficiency depends on “nice” code
- out-of-order execution
- few dependencies (control,data)
- compiler support

Compilers like simple loops over arrays
- loop-pipelining
- automatic SIMD

22
37
45
25

alice
ivan
peggy
victor

101
102
104
105

next()

“MonetDB/X100: Hyper-Pipelining Query Execution
” Boncz, Zukowski, Nes, CIDR’05

event.cwi.nl/lsde2015

SCAN

SELECT

PROJECT
FALSE
TRUE
TRUE
FALSE

350
750

Observations:

next() called much less
often  more time spent
in primitives less in
overhead

primitive calls process an
array of values in a
loop:

> 30 ?

* 50

CPU Efficiency depends on “nice” code
- out-of-order execution
- few dependencies (control,data)
- compiler support

Compilers like simple loops over arrays
- loop-pipelining
- automatic SIMD

FALSE
TRUE
TRUE
FALSE

> 30 ?

7
15

- 30

350
750

* 50

for(i=0; i<n; i++)

 res[i] = (col[i] > x)

for(i=0; i<n; i++)

 res[i] = (col[i] - x)

for(i=0; i<n; i++)

 res[i] = (col[i] * x)

“MonetDB/X100: Hyper-Pipelining Query Execution
” Boncz, Zukowski, Nes, CIDR’05

event.cwi.nl/lsde2015

VLDB 2009 Tutorial 35

Varying the Vector size

Less and less iterator.next()
and

primitive function calls
(“interpretation overhead”)

“MonetDB/X100: Hyper-Pipelining Query
Execution ” Boncz, Zukowski, Nes, CIDR’05

event.cwi.nl/lsde2015

VLDB 2009 Tutorial 36

Vectors start to exceed the
CPU cache, causing

additional memory traffic

“MonetDB/X100: Hyper-Pipelining Query
Execution ” Boncz, Zukowski, Nes, CIDR’05

Varying the Vector size

event.cwi.nl/lsde2015

Benefits of Vectorized Processing
• Less Interpretation Overhead

– iterator.next(), primitives

– Array-only, no complex record navigation

• Compiler-friendly primitive code

– Move activities out of the loop (“strength reduction”)

– Loop-pipelining, automatic SIMD generation by the compiler

• Less Cache Misses

– High instruction cache locality in the primitives

– Data-Cache friendly sequential data placement

• Profiling and Adaptivity

– Performance bookkeeping cost amortized over an entire vector

– stats can be exploited during the query to select fastest primitive variants

Buffering Database Operations for Enhanced Instruction
Cache Performance” Zhou, Ross, SIGMOD’04

“Block oriented processing of relational database
operations in modern computer architectures”
Padmanabhan, Malkemus, Agarwal, ICDE’01

“MonetDB/X100: Hyper-Pipelining Query
Execution ” Boncz, Zukowski, Nes, CIDR’05

Micro-adaptivity in Vectorwise, Raducanu, Zukowski, Boncz, SIGMOD’13

event.cwi.nl/lsde2015

Systems That Use Vectorization
• Actian Vortex (Vectorwise-on-Hadoop)
• Hive, Drill

event.cwi.nl/lsde2015

Analytical DB engines for Hadoop
 storage

–columnar storage + compression
–table partitioning / distribution
–exploiting correlated data query-processor

 CPU-efficient query engine
 (vectorized or JIT codegen)
 many-core ready
 rich SQL (+authorization+..)

 system
 batch update infrastructure
 scaling with multiple nodes
 MetaStore & file formats
 YARN & elasticity

event.cwi.nl/lsde2015

Impala: Just In Time SQLLLVM (~asm)

Compiles each
operator in a SQL
query into a
vectorized
next() method

SCAN

SELECT

PROJECT

101
102
104
105

alice
ivan
peggy
victor

22
37
45
25

7
15

FALSE
TRUE
TRUE
FALSE

37
45

ivan
peggy

102
104

350
750

ivan
peggy

102
104

350
750

> 30 ?

- 30 * 50

22
37
45
25

alice
ivan
peggy
victor

101
102
104
105

next1()

next2()

next3()

event.cwi.nl/lsde2015

Hyper-db.de: compilation across operators

Loop1()

Loop2 ()

Loop3 ()

Loop4 ()

scan

scan scan

aggr

select

select

join

join

event.cwi.nl/lsde2015

Analytical DB engines for Hadoop
 storage

–columnar storage + compression
–table partitioning / distribution
–exploiting correlated data query-processor

 CPU-efficient query engine
 (vectorized or JIT codegen)
 many-core ready
 analytical SQL (windowing)

 system
 batch update infrastructure
 scaling with multiple nodes
 MetaStore & file formats
 YARN & elasticity

event.cwi.nl/lsde2015

Asynchronous
Data Transfer

TUPLE MOVER

> Read Optimized
Store (ROS)

• On disk
• Sorted / Compressed
• Segmented
• Large data loaded direct

Batch Update Infrastructure (Vertica)
Challenge: hard to update columnar compressed data

(A B C | A)

A

B

C

Trickle
Load

> Write Optimized
Store (WOS)

Memory based
Unsorted / Uncompressed
 Segmented
 Low latency / Small quick

inserts

A

B

C

event.cwi.nl/lsde2015

Batch Update Infrastructure (Hive)
Challenge: HDFS read-only + large block size

Merge During Query Processing

event.cwi.nl/lsde2015

Batch Update Infrastructure
Hive (Spinner release) HDFS Layout:

event.cwi.nl/lsde2015

Batch Update Infrastructure
Hive (Spinner release) HDFS Layout:

event.cwi.nl/lsde2015

Analytical DB engines for Hadoop
 storage

–columnar storage + compression
–table partitioning / distribution
–exploiting correlated data query-processor

 CPU-efficient query engine
 (vectorized or JIT codegen)
 many-core ready
 rich SQL (+authorization+..)

 system
 batch update infrastructure
 scaling with multiple nodes
 MetaStore & file formats
 YARN & elasticity

event.cwi.nl/lsde2015

SQL-99 OLAP Extensions
• ORDER BY .. PARTITION BY

– window specifications inside a partition
• first_value(), last_value(), …

– Rownum(), dense_rank(), …

event.cwi.nl/lsde2015

Analytical DB engines for Hadoop
 storage

–columnar storage + compression
–table partitioning / distribution
–exploiting correlated data query-processor

 CPU-efficient query engine
 (vectorized or JIT codegen)
 many-core ready
 rich SQL (+authorization+..)

 system
 batch update infrastructure
 scaling with multiple nodes
 MetaStore & file formats
 YARN & elasticity

event.cwi.nl/lsde2015

Scaling Through Parallel Query Processing
Scalability is hard!
• Core Contention
• Network Latency&Bandwidth
..Amdahls Law

• All nodes work on the query

– Partitioning
– ExCHanGe data over network

• All cores in a node work
– Divide each partition (how?)

event.cwi.nl/lsde2015

Analytical DB engines for Hadoop
 storage

–columnar storage + compression
–table partitioning / distribution
–exploiting correlated data query-processor

 CPU-efficient query engine
 (vectorized or JIT codegen)
 many-core ready
 rich SQL (+authorization+..)

 system
 batch update infrastructure
 scaling with multiple nodes
 MetaStore & file formats
 YARN & elasticity

event.cwi.nl/lsde2015

YARN runs on all nodes in the cluster

event.cwi.nl/lsde2015

Client creates Application Master

event.cwi.nl/lsde2015

Application Master asks for Containers

event.cwi.nl/lsde2015

YARN possibilities and limitations
Containers are used to assign:
• cores
• RAM

Limitations:
• no support for disk I/O, network (thrashing still possible)
• Long-running systems (e.g. DBMS) may want to adjust cores and RAM

over time depending on workload  “elasticity”

event.cwi.nl/lsde2015

Conclusion
• SQL-on-Hadoop area is very active

– many open-source and commercial initiatives
• There are many design dimensions

– All design dimensions of analytical database systems
• Column storage, compression, vectorization/JIT, MinMax

pushdown, partitioning, parallel scaling, update handling, SQL99,
ODBC/JDBC APIs, authorization

– Hadoop design dimensions
• HCatalog support, reading from and getting read from other

Hadoop tools (/writing to..), file format support, HDFS locality,
YARN integration

	Large-Scale Data Engineering
	Analytical Database Systems
	SQL-on-Hadoop Systems
	 “SQL on Hadoop” Systems
	Analytical DB engines for Hadoop
	Columnar Storage
	Analytical DB engines for Hadoop
	Columnar Compression
	Run-length Encoding
	Bitmap Encoding
	Dictionary Encoding
	Frame Of Reference Encoding
	Differential Encoding
	Heavy-Weight Compression Schemes
	Operating Directly on Compressed Data
	Analytical DB engines for Hadoop
	Table Partitioning and Distribution
	Vertica Multiple Orders (Projections)
	Data Placement in Hadoop
	Example: Parquet Format
	Popular File Formats in Hadoop
	Example: Parquet Format
	HCatalog (“Hive MetaStore”)
	Analytical DB engines for Hadoop
	MinMax and Zone Maps
	Analytical DB engines for Hadoop
	DBMS Computational Efficiency?
	DBMS Computational Efficiency?
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Varying the Vector size
	Varying the Vector size
	Benefits of Vectorized Processing
	Systems That Use Vectorization
	Analytical DB engines for Hadoop
	Slide Number 40
	Slide Number 41
	Analytical DB engines for Hadoop
	Batch Update Infrastructure (Vertica)
	Batch Update Infrastructure (Hive)
	Batch Update Infrastructure
	Batch Update Infrastructure
	Analytical DB engines for Hadoop
	SQL-99 OLAP Extensions
	Analytical DB engines for Hadoop
	Scaling Through Parallel Query Processing
	Analytical DB engines for Hadoop
	YARN runs on all nodes in the cluster
	Client creates Application Master
	Application Master asks for Containers
	YARN possibilities and limitations
	Conclusion

