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Analytical Database Systems 

Parallel (MPP): 
Teradata       Paraccel 
Pivotal 
Vertica                            Redshift 

Oracle (IMM)         Netteza 
DB2-BLU             InfoBright 
SQLserver                 Vectorwise 
(columnstore) 

open source: 
MySQL   LucidDB 
MonetDB 

 

? 
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SQL-on-Hadoop Systems 
Open Source: 
• Hive  (HortonWorks) 
• Impala (Cloudera) 
• Drill (MapR) 
• Presto (Facebook) 

Commercial: 
• HAWQ (Pivotal) 
• Vortex (Actian) 
• Vertica Hadoop (HP) 
• BigQuery (IBM) 
• DataBricks 
• Splice Machine 
• CitusData 
• InfiniDB Hadoop 
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“wrapped  
  legacy” 

“from   
scratch” 

SQL  
Maturity 

(performance+features) 

Hadoop Integration 

 “SQL on Hadoop” Systems 

Low Native 

High 

“outside 
Hadoop” 
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Analytical DB engines for Hadoop 
             storage 

–columnar storage + compression  
–table partitioning / distribution 
–exploiting correlated data        query-processor 

 CPU-efficient query engine 
 (vectorized or JIT codegen) 
 many-core ready 
 rich SQL (+authorization+..) 

 
 

           system 
 batch update infrastructure 
 scaling with multiple nodes 
 MetaStore & file formats 
 YARN & elasticity 
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Columnar Storage 
row-store column-store 

Date Customer Product Store 

+ easy to add/modify a record 
 
- might read in unnecessary data 

+ only need to read in relevant data 
 
- tuple writes require multiple accesses 

=> suitable for read-mostly, read-intensive, large data repositories  

Date Store Product Customer Price Price 

Query on data and store 

Inserting a new record 
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Analytical DB engines for Hadoop 
             storage 

–columnar storage + compression  
–table partitioning / distribution 
–exploiting correlated data        query-processor 

 CPU-efficient query engine 
 (vectorized or JIT codegen) 
 many-core ready 
 rich SQL (+authorization+..) 

 

           system 
 batch update infrastructure 
 scaling with multiple nodes 
 MetaStore & file formats 
 YARN & elasticity 
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Columnar Compression 
• Trades I/O for CPU 

– A winning proposition currently 
– Even trading RAM bandwidth for CPU wins 

• 64 core machines starved for RAM bandwidth  
• Additional column-store synergy: 

– Column store: data of the same distribution close together 
• Better compression rates 
• Generic compression (gzip) vs Domain-aware compression 

– Synergy with vectorized processing (see later) 
compress/decompress/execution, SIMD  

– Can use extra space to store multiple copies of data in different 
sort orders (see later) 
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Run-length Encoding 

Q1 
Q1 
Q1 
Q1 
Q1 
Q1 
Q1 

Q2 
Q2 
Q2 
Q2 

… 

… 

1 
1 
1 
1 
1 
2 
2 

1 
1 
1 
2 

… 

… 

Product ID Quarter 
(value, start_pos, run_length) 

(1, 1, 5) 

… 

… 

Product ID Quarter 

(Q2, 301, 350) 
(Q3, 651, 500) 
(Q4, 1151, 600) 

(2, 6, 2) 

(1, 301, 3) 
(2, 304, 1) 

5 
7 
2 
9 
6 
8 
5 

3 
8 
1 
4 

… 

… 

Price 

5 
7 
2 
9 
6 
8 
5 

3 
8 
1 
4 
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… 

Price 

(Q1, 1, 300) 
(value, start_pos, run_length) 
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Bitmap Encoding 
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0 
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0 

… 

… 

ID: 1 ID: 2 ID: 3 
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0 

… 

… 
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0 
0 
0 
0 
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1 

… 

… 

0 
0 
0 
0 
0 
1 
1 

0 
0 
1 
0 

… 

… 

“Integrating Compression and Execution in Column-Oriented 
Database Systems” Abadi et. al,  SIGMOD ’06 

• For each unique 
value, v, in column c, 
create bit-vector b 

– b[i] = 1 if c[i] = v 
• Good for columns 

with few unique 
values 

• Each bit-vector can 
be further 
compressed if sparse 
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Q1 
Q2 
Q4 
Q1 
Q3 
Q1 
Q1 

Q2 
Q4 
Q3 
Q3 
… 

Quarter 

Q1 

0 
1 
3 
0 
2 
0 
0 

1 
3 
2 
2 

… 

Quarter 

0 

0: Q1 
1: Q2 
2: Q3 
3: Q4 

Dictionary Encoding 

Dictionary 
+ 

OR 

24 
128 
122 

Quarter 

24: Q1, Q2, Q4, Q1 

128: Q3, Q1, Q1, Q1 

122: Q2, Q4, Q3, Q3 

Dictionary 

+ 

“Integrating Compression and Execution in Column-Oriented 
Database Systems” Abadi et. al,  SIGMOD ’06 

… 

• For each unique 
value create 
dictionary entry 

• Dictionary can 
be per-block or 
per-column 

• Column-stores 
have the 
advantage that 
dictionary 
entries may 
encode multiple 
values at once 
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45 
54 
48 
55 
51 
53 
40 

49 
62 
52 
50 
… 

Price 

50 

Frame: 50 

4 
-2 
5 
1 
3 

2 

0 

0 
… 

Price 

-1 

Frame Of Reference Encoding 

-5 

∞ 
40 

∞ 
62 

4 bits per 
value 

Exceptions (there 
are better ways to 
deal with 
exceptions) 

• Encodes values as b bit 
offset from chosen frame 
of reference 

• Special escape code (e.g. 
all bits set to 1) indicates a 
difference larger than can 
be stored in b bits 

– After escape code, 
original (uncompressed) 
value is written  

 “Compressing Relations and Indexes ” 
Goldstein, Ramakrishnan, Shaft, ICDE’98 
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Differential Encoding 

5:00 
5:02 
5:03 
5:03 
5:04 
5:06 
5:07 

5:10 
5:15 
5:16 
5:16 

… 

Time 

5:08 

2 
1 
0 
1 
2 

1 

1 

0 

Time 

2 

5:00 

1 

∞ 
5:15 

2 bits per 
value 

Exceptions (there 
are better ways to 
deal with 
exceptions) 

• Encodes values as b bit offset from 
previous value 

• Special escape code (just like 
frame of reference encoding) 
indicates a difference larger than 
can be stored in b bits 

– After escape code, original 
(uncompressed) value is written  

• Performs well on columns 
containing increasing/decreasing 
sequences 

– inverted lists 
– timestamps 
– object IDs 
– sorted / clustered columns 

“Improved Word-Aligned Binary 
Compression for Text Indexing” Ahn, 
Moffat, TKDE’06 
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Heavy-Weight Compression Schemes 

• Modern disks (SSDs) can achieve > 1GB/s 
• 1/3 CPU for decompression  3GB/s needed 

 Lightweight compression schemes are better 

 Even better: operate directly on compressed data 

“Super-Scalar RAM-CPU Cache Compression” 
Zukowski, Heman, Nes, Boncz, ICDE’06 
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Examples 
• SUMi(rle-compressed column[i])  SUMg(count[g] * value[g]) 
• (country == “Asia”)  countryCode == 6 

           strcmp                                     SIMD  
 
Benefits: 
• I/O - CPU tradeoff is no longer a tradeoff (CPU also gets improved) 
• Reduces memory–CPU bandwidth requirements 
• Opens up possibility of operating on multiple records at once 

 

Operating Directly on Compressed Data 

“Integrating Compression and Execution in Column-Oriented 
Database Systems” Abadi et. al,  SIGMOD ’06 
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Analytical DB engines for Hadoop 
             storage 

–columnar storage + compression  
–table partitioning / distribution 
–exploiting correlated data        query-processor 

 CPU-efficient query engine 
 (vectorized or JIT codegen) 
 many-core ready 
 rich SQL (+authorization+..) 

 

           system 
 batch update infrastructure 
 scaling with multiple nodes 
 MetaStore & file formats 
 YARN & elasticity 
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• data is spread based on a Key 
– Functions: Hash, Range, List 

•  “distribution” 
– Goal: parallelism 

• give each compute node a piece of the data 
• each query has work on every piece (keep everyone busy)  

• “partitioning” 
– Goal: data lifecycle management 

• Data warehouse e.g. keeps last six months 
• Every night: load one new day, drop the oldest partition 

– Goal: improve access patterm 
• when querying for May, drop Q1,Q3,Q4  (“partition pruning”)  

Table Partitioning and Distribution 

distribute by hash 

Q1 

Q2 

Q3 

Q4 

partition by range 

Which kind of function would you use for which method? 
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Vertica Multiple Orders (Projections) 
• Precomputed Projections 

reduce join effort 
• Projections are ordered (e.g. 

on “date”, or on “cust”) 
• Ordered data allows 

“selection pushdown” 
– Scan less data 

• Ordered Data enhances 
compression 

– Run-length encoding 
– Frame of Reference 
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• Each node writes the partitions it owns 
– Where does the data end up, really? 

• HDFS default block placement strategy: 
– Node that initiates writes gets first copy 
– 2nd copy on the same rack 
– 3rd copy on a different rack 

• Rows from the same record should on the same node 
– Not entirely trivial in column stores 

• Column partitions should be co-located 
– Simple solution: 

• Put all columns together in one file (RCFILE, ORCFILE, Parquet) 
– Complex solution: 

• Replace the default HDFS block placement strategy by a custom one  
 
 

Data Placement in Hadoop 

distribute by hash 

Q1 

Q2 

Q3 

Q4 

partition by range 
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Example: Parquet Format 
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• Good old CSV 
– Textual, easy to parse (but slow), better compress it! 

• Sequence Files 
– Binary data, faster to process 

• RCfile 
– Hive first attempt at column-store 

• ORCfile 
– Columnar compression, MinMax 

• Parquet 
– Proposed by Twitter and Cloudera Impala 
– Like ORCfile, no MinMax 

 
 
 
 

Popular File Formats in Hadoop 

distribute by hash 

Q1 

Q2 

Q3 

Q4 

partition by range 
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Example: Parquet Format 
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HCatalog  (“Hive MetaStore”)  
De-facto Metadata Standard on Hadoop 
• Where are the tables? Wat do they contain? How are they Partitioned? 
• Can I read from them? Can I write to them? 
 
 

SQL-on-Hadoop challenges: 
• Reading-writing many file formats 
• Opening up the own datastore to 

foreign tools that read from it 
HCatalog makes UDFs less 

important! 
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Analytical DB engines for Hadoop 
             storage 

–columnar storage + compression  
–table partitioning / distribution 
–exploiting correlated data        query-processor 

 CPU-efficient query engine 
 (vectorized or JIT codegen) 
 many-core ready 
 rich SQL (+authorization+..) 

 

           system 
 batch update infrastructure 
 scaling with multiple nodes 
 MetaStore & file formats 
 YARN & elasticity 
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• Data is often naturally ordered 
– very often, on date 

• Data is often correlated 
– orderdate/paydate/shipdate 
– marketing campaigns/date 
– ..correlation is everywhere 
   ..hard to predict 
 

Can we exploit correlation? 
– Very sparse index 
– Keeps MinMax for every column 
– Cheap to maintain 

• Just widen bounds on  
 each modification 

 

MinMax and Zone Maps 

Q: key BETWEEN 13 AND 15? 

Q: acctno BETWEEN 150 AND 200? 

bucket 0 
bucket 1 

bucket 2 
bucket 3 
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Analytical DB engines for Hadoop 
             storage 

–columnar storage + compression  
–table partitioning / distribution 
–exploiting correlated data        query-processor 

 CPU-efficient query engine 
 (vectorized or JIT codegen) 
 many-core ready 
 rich SQL (+authorization+..) 

 

           system 
 batch update infrastructure 
 scaling with multiple nodes 
 MetaStore & file formats 
 YARN & elasticity 
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DBMS Computational Efficiency? 
TPC-H 1GB, query 1 
• selects 98% of fact table, computes net prices and aggregates all 
• Results: 

– C program: ? 
– MySQL:  26.2s  
– DBMS “X”: 28.1s 

 
 
 

“MonetDB/X100: Hyper-Pipelining Query 
Execution ” Boncz, Zukowski, Nes, CIDR’05 
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DBMS Computational Efficiency? 
TPC-H 1GB, query 1 
• selects 98% of fact table, computes net prices and aggregates all 
• Results: 

– C program: 0.2s 
– MySQL:  26.2s  
– DBMS “X”: 28.1s 

 
 
 

“MonetDB/X100: Hyper-Pipelining Query 
Execution ” Boncz, Zukowski, Nes, CIDR’05 
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SCAN 

 
 

SELECT 

 
 

PROJECT 

alice 22 101 
next() 

next() 

next() 

ivan 37 102 

ivan 37 102 

ivan 37 102 

ivan 350 102 

alice 22 101 

SELECT   id, name  
 (age-30)*50 AS bonus 
FROM employee 
WHERE   age > 30 

350 

FALSE TRUE   

22 > 30 ? 37 > 30 ? 

37 – 30  7 * 50  

7 

How Do Query Engines Work?  



event.cwi.nl/lsde2015 

 
SCAN 

 
 

SELECT 

 
 

PROJECT 

next() 

next() 

next() 

ivan 350 102 

Operators 
 
Iterator interface 
-open() 
-next(): tuple 
-close() 

How Do Query Engines Work?  
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SCAN 

 
 

SELECT 

 
 

PROJECT 

alice 22 101 
next() 

next() 

next() 

ivan 37 102 

ivan 37 102 

ivan 37 102 

ivan 350 102 

alice 22 101 

350 

FALSE TRUE   

22 > 30 ? 37 > 30 ? 

37 – 30  7 * 50  

7 
Primitives 
 
Provide computational 
functionality 
 
All arithmetic allowed in  
expressions,  
e.g. Multiplication 
 
 
mult(int,int)  int 

7 * 50  

How Do Query Engines Work?  
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SCAN 

 
 

SELECT 

 
 

PROJECT 

next() 

next() 

101 
102 
104 
105 

alice 
ivan 
peggy 
victor 

22 
37 
45 
25 

7 
15 

FALSE 
TRUE 
TRUE 
FALSE 

37 
45 

ivan 
peggy 

102 
104 

350 
750 

ivan 
peggy 

102 
104 

350 
750 

Observations: 
 
next() called much less 
often  more time spent 
in primitives less in 
overhead 
 
primitive calls process an 
array of values in a 
loop: 
 
 
 
 
 
 

> 30 ? 

- 30 * 50 

22 
37 
45 
25 

alice 
ivan 
peggy 
victor 

101 
102 
104 
105 

 
 
 
“Vectorized In Cache 
Processing” 
 
vector = array of 
~100 
 
processed in a tight 
loop 
 
CPU cache Resident 
 
 
 
 

next() 

“MonetDB/X100: Hyper-Pipelining Query Execution 
” Boncz, Zukowski, Nes, CIDR’05 
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TRUE 
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45 
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ivan 
peggy 
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Observations: 
 
next() called much less 
often  more time spent 
in primitives less in 
overhead 
 
primitive calls process an 
array of values in a 
loop: 
 
 
 
 
 
 

> 30 ? 

- 30 * 50 

CPU Efficiency depends on “nice” code 
- out-of-order execution 
- few dependencies (control,data) 
- compiler support  
 
Compilers like simple loops over arrays 
- loop-pipelining 
- automatic SIMD 

22 
37 
45 
25 

alice 
ivan 
peggy 
victor 

101 
102 
104 
105 

next() 

“MonetDB/X100: Hyper-Pipelining Query Execution 
” Boncz, Zukowski, Nes, CIDR’05 
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SCAN 

 
 

SELECT 

 
 
 

PROJECT 
FALSE 
TRUE 
TRUE 
FALSE 

350 
750 

Observations: 
 
next() called much less 
often  more time spent 
in primitives less in 
overhead 
 
primitive calls process an 
array of values in a 
loop: 
 
 
 
 
 
 

> 30 ? 

* 50 

CPU Efficiency depends on “nice” code 
- out-of-order execution 
- few dependencies (control,data) 
- compiler support  
 
Compilers like simple loops over arrays 
- loop-pipelining 
- automatic SIMD 

FALSE 
TRUE 
TRUE 
FALSE 

> 30 ? 

7 
15 

- 30 

350 
750 

* 50 

for(i=0; i<n; i++) 

  res[i] = (col[i] > x) 

for(i=0; i<n; i++) 

  res[i] = (col[i] - x) 

for(i=0; i<n; i++) 

  res[i] = (col[i] * x) 

“MonetDB/X100: Hyper-Pipelining Query Execution 
” Boncz, Zukowski, Nes, CIDR’05 
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VLDB 2009 Tutorial                                                               35 

Varying the Vector size 

Less and less iterator.next() 
and  

primitive function calls 
(“interpretation overhead”) 

“MonetDB/X100: Hyper-Pipelining Query 
Execution ” Boncz, Zukowski, Nes, CIDR’05 
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VLDB 2009 Tutorial                                                               36 

Vectors start to exceed the 
CPU cache, causing 

additional memory traffic 

“MonetDB/X100: Hyper-Pipelining Query 
Execution ” Boncz, Zukowski, Nes, CIDR’05 

Varying the Vector size 
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Benefits of Vectorized Processing 
• Less Interpretation Overhead  

– iterator.next(), primitives 

– Array-only, no complex record navigation  

• Compiler-friendly primitive code 

– Move activities out of the loop (“strength reduction”) 

– Loop-pipelining, automatic SIMD generation by the compiler 

• Less Cache Misses 

– High instruction cache locality in the primitives 

– Data-Cache friendly sequential data placement 

• Profiling and Adaptivity 

– Performance bookkeeping cost amortized over an entire vector 

– stats can be exploited during the query to select fastest primitive variants 

 

 

Buffering Database Operations for Enhanced Instruction 
Cache Performance” Zhou,  Ross, SIGMOD’04 

“Block oriented processing of relational database 
operations in modern computer architectures” 
Padmanabhan, Malkemus, Agarwal, ICDE’01 

“MonetDB/X100: Hyper-Pipelining Query 
Execution ” Boncz, Zukowski, Nes, CIDR’05 

Micro-adaptivity in Vectorwise, Raducanu, Zukowski, Boncz, SIGMOD’13 
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Systems That Use Vectorization 
• Actian Vortex (Vectorwise-on-Hadoop) 
• Hive, Drill 
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Analytical DB engines for Hadoop 
             storage 

–columnar storage + compression  
–table partitioning / distribution 
–exploiting correlated data        query-processor 

 CPU-efficient query engine 
 (vectorized or JIT codegen) 
 many-core ready 
 rich SQL (+authorization+..) 

 

           system 
 batch update infrastructure 
 scaling with multiple nodes 
 MetaStore & file formats 
 YARN & elasticity 
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Impala: Just In Time SQLLLVM (~asm) 

 
 

Compiles each 
operator in a SQL 
query into a 
vectorized  
next() method 

 
 

SCAN 

 
 

SELECT 

 
 

PROJECT 

101 
102 
104 
105 

alice 
ivan 
peggy 
victor 

22 
37 
45 
25 

7 
15 

FALSE 
TRUE 
TRUE 
FALSE 

37 
45 

ivan 
peggy 

102 
104 

350 
750 

ivan 
peggy 

102 
104 

350 
750 

> 30 ? 

- 30 * 50 

22 
37 
45 
25 

alice 
ivan 
peggy 
victor 

101 
102 
104 
105 

next1() 

next2() 

next3() 
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Hyper-db.de: compilation across operators 

Loop1() 

Loop2 () 

Loop3 () 

Loop4 () 

scan 

scan scan 

aggr 

select 

select 

join 

join 
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Analytical DB engines for Hadoop 
             storage 

–columnar storage + compression  
–table partitioning / distribution 
–exploiting correlated data        query-processor 

 CPU-efficient query engine 
 (vectorized or JIT codegen) 
 many-core ready 
 analytical SQL (windowing) 

 

           system 
 batch update infrastructure 
 scaling with multiple nodes 
 MetaStore & file formats 
 YARN & elasticity 
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Asynchronous 
Data Transfer 

TUPLE MOVER 

> Read Optimized 
Store (ROS) 

• On disk 
• Sorted / Compressed 
• Segmented 
• Large data loaded direct 

Batch Update Infrastructure (Vertica) 
Challenge: hard to update columnar compressed data  

(A B C | A) 

 
 

 

A 
 
 
 

 
 

 

B 
 
 
 

 
 

 

C 
 
 
 

Trickle 
Load 

> Write Optimized 
Store (WOS) 

Memory based 
Unsorted / Uncompressed 
 Segmented 
 Low latency / Small quick 

inserts 

 
 

 

A 
 
 
 

 
 

 

B 
 
 
 

 
 

 

C 
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Batch Update Infrastructure (Hive) 
Challenge: HDFS read-only + large block size 

Merge During Query Processing 
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Batch Update Infrastructure 
Hive (Spinner release) HDFS Layout: 
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Batch Update Infrastructure 
Hive (Spinner release) HDFS Layout: 
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Analytical DB engines for Hadoop 
             storage 

–columnar storage + compression  
–table partitioning / distribution 
–exploiting correlated data        query-processor 

 CPU-efficient query engine 
 (vectorized or JIT codegen) 
 many-core ready 
 rich SQL (+authorization+..) 

 

           system 
 batch update infrastructure 
 scaling with multiple nodes 
 MetaStore & file formats 
 YARN & elasticity 
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SQL-99 OLAP Extensions 
• ORDER BY .. PARTITION BY 

– window specifications inside a partition 
• first_value(), last_value(), … 

– Rownum(), dense_rank(), … 
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Analytical DB engines for Hadoop 
             storage 

–columnar storage + compression  
–table partitioning / distribution 
–exploiting correlated data        query-processor 

 CPU-efficient query engine 
 (vectorized or JIT codegen) 
 many-core ready 
 rich SQL (+authorization+..) 

 

           system 
 batch update infrastructure 
 scaling with multiple nodes 
 MetaStore & file formats 
 YARN & elasticity 
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Scaling Through Parallel Query Processing 
Scalability is hard! 
• Core Contention 
• Network Latency&Bandwidth 
..Amdahls Law 
 
• All nodes work on the query 

– Partitioning 
– ExCHanGe data over network 

• All cores in a node work 
– Divide each partition (how?) 

 



event.cwi.nl/lsde2015 

Analytical DB engines for Hadoop 
             storage 

–columnar storage + compression  
–table partitioning / distribution 
–exploiting correlated data        query-processor 

 CPU-efficient query engine 
 (vectorized or JIT codegen) 
 many-core ready 
 rich SQL (+authorization+..) 

 

           system 
 batch update infrastructure 
 scaling with multiple nodes 
 MetaStore & file formats 
 YARN & elasticity 
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YARN runs on all nodes in the cluster 



event.cwi.nl/lsde2015 

Client creates Application Master 
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Application Master asks for Containers 
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YARN possibilities and limitations 
Containers are used to assign: 
• cores 
• RAM 
 
Limitations: 
• no support for disk I/O, network (thrashing still possible) 
• Long-running systems (e.g. DBMS) may want to adjust cores and RAM 

over time depending on workload  “elasticity” 
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Conclusion 
• SQL-on-Hadoop area is very active 

– many open-source and commercial initiatives 
• There are many design dimensions 

– All design dimensions of analytical database systems 
• Column storage, compression, vectorization/JIT, MinMax 

pushdown, partitioning, parallel scaling, update handling, SQL99, 
ODBC/JDBC APIs, authorization 

– Hadoop design dimensions 
• HCatalog support, reading from and getting read from other 

Hadoop tools (/writing to..), file format support, HDFS locality, 
YARN integration 
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